
Architect
Beta
Quick-Start
guide
Welcome to Architect, and thank you for being part of the Architect beta test. A beta software
product is not quite a finished software product, and as such does not necessarily represent
the quality of the final release: features may be missing, and bugs may be present.

Architect is a modular MIDI toolkit and music production environment for macOS, Windows,
and Linux. Similar to the classic modular synths, you build patches from small modules that
work together to generate pieces impossible to conceive of using conventional compositional
techniques.

Architect is a large product, and in many ways very different from conventional music
software. Reading this quick-start guide should hold your hand enough for you to feel
confident experimenting in Architect on your own. But if you're still stuck, help is available:

Try posting to the support forum at https://www.kvraudio.com/forum/viewforum.php?
f=141
Try contacting support directly at support@loomer.co.uk

Evaluation
limitations

In evaluation mode, Architect can not load old projects, nor restore state when loaded in a
host as part of a larger set. However, this state is still saved, and when a licence is purchased
your previously saved projects will be available.

A licence for Architect can be bought from
http://sites.fastspring.com/loomer/product/architect

The latest beta versions can be found at https://www.loomer.co.uk/architect.htm

The most recent version of this document can be found at
https://www.loomer.co.uk/downloads/architect-quick-start.pdf

Finding
your
way
around
Architect

Architect mainly uses a single window interface. This window can be split in various ways, and
many optional elements can be hidden when they are not being used. Two of these warrant
special mention, as you'll generally want to always keep them open.

https://www.kvraudio.com/forum/viewforum.php?f=141
mailto:support@loomer.co.uk
http://sites.fastspring.com/loomer/product/architect
https://www.loomer.co.uk/architect.htm
https://www.loomer.co.uk/downloads/architect-quick-start.pdf


The
properties

The properties window is shown on the right-hand side of the interface. If can be shown and
hidden with the properties icon next to the cog on the top-right toolbar.

Want to know what a button does? Hover your mouse over it for a second and you will
be told.

The properties window shows the properties of the currently selected object. Here, we see
(some) of the (many) properties of a mono step sequencer.

The
console

The console, shown at the bottom of the interface, displays errors, warnings, and general
feedback from the Architect engine.



Show and hide the console window with the button in the status bar at the bottom of the
interface.

If a new message is added to the console whilst the console is not visible, the button
will display a notification icon to let you know.

You'll likely make many mistakes when first building your Architect programs. The console
should be your first place to check when your creations don't work, as very often Architect will
inform you where you've went wrong.

Clear the console history with the clear button on the top left of the console window.

Remove any error indicators with the clear error buttons below this.

The
main
windows

Architect's interface is divided into five main windows: graph, panel, play, timeline, and mixer.
Additionally, contextual windows may be added to this in some circumstances. Selecting a
sequencer, for example, adds a specific window to view the sequencer interface.

Multiple windows can be display by splitting the window using the horizontal and
vertical split icons on the toolbars.

Graph



This is where you build your Architect patches by adding modules and wiring them together. If
you've used a modular synth before, you'll be at home here.

Panel

You can create your own custom interface for your patch by adding various UI components,
such as buttons, labels and sliders. The components can be styled to give your patch its own
look.

Play

The play window is for non-linear sequencing. Scenes are added horizontally, and sequencing
devices vertically. Playing a scene will play all the clips in the same column. You can also set a
cell to stop, restart the current sequence, or continue from where it currently is.



Timeline

The timeline is for linear sequencing. If you've use any other sequencing application before,
you'll likely be familiar with this type of arrangement.

Mixer

The mixer if where your Architect MIDI output is routed to be turned into audio. Like a
traditional software DAW, you can add tracks and plug-ins to these tracks.



Performance
Parameters

These parameters can be shown and hidden with the button the status bar. Performance
parameters can be mapped to other components in your Architect patch. The parameters are
also exposed to any compatible host, so when using Architect as a plug-in they provide an
easy way to automate things externally.

The
secondary
windows

These smaller windows sit above the properties windows. Only one (or none) can be shown at
a time.

Remote
mappings

This window displays the current remote mappings. When the window is visible, all potential
mapping targets will be highlighted.



MIDI
files

MIDI files can be imported here to be played with the 	MIDI	player	 module. You can also
capture your Architect MIDI output here with a 	write	to	MIDI	Pool	 module.

Audio
files

Captured audio output from Architect is displayed here. Audio files can be exported or
dragged into other applications.

Scales

Architect comes with over 30 build-in scales, but here you can also define your own custom
scales.

The
file
browser

Clicking the preset name (which may be "untitled preset" if you've not yet saved your preset)
will open the integrated file browser.

Your
first
patch

When trying a new programming language, it's tradition to write a program called "hello,
world", which simply prints those very words. Let's do that in Architect.



Start with an empty preset. If you've already made some changes, then either save or
discard them and start a new preset by clicking "New".

We'll need the following windows visible: the graph, the properties, and the console.

First off all, let's add a 	print	 module to the graph. There are many ways to add modules.
You can:

Show the Object Palette window (using the button on the top left of the graph) and
drag it in from the selection. The 	print	 module is found under the Built-in > Output
branch.

Right-click on the graph and select 	print	 from the Built-in > Output menu. Hmmm,
both of these methods seem a little slow. Is there a faster way?

Yes! Use the quick dialog! With the graph focused, type the word print, and then
press return. This method is by far the fastest way to add modules and so should be
the preferred way.

The green slit in the top of the print module is called an inlet. Inlets are how data is passed
into a module. Outlets appear on the bottom of modules, and this is how modules pass
data out.

So let's create some data. Type the word data (or choose the 	data	 modules from Built-in
> Data Source). A 	data	 module allows you to create an object of any type
understandable by Architect.

Types

Objects passed between modules have a specific type, which tells you what information they
represent. Architect supports several simple data types:

string - Some text. These are represented by "things in quotes".

integer - Whole numbers, such as 0, -23, 42.

float - These are numbers with decimal points, such at 0.5, 23.7, and 1.0.

boolean - These can either be true or false.

All data types can be implicitly converted to boolean values. 0, 0.0, undefined, the
empty string, empty array, empty map, and empty tuple are all false. Every other value



is true.

undefined - This type represents the absence of a value. When a 	get	key	 module (which
outputs the MIDI key that the given MIDI message has) is passed a sysex message, its answer
is: undefined.

signal - This is a generic type that contains no further information. Signals are commonly used
to indicate events. For example, a 	metronome	 module will periodically send out signal objects.

Architect also supports several composite data objects, which are built up from these simple
data types.

array - Zero or more items in a list. They are denoted with square brackets, for example [0, 2,
3, 5, 7]. Arrays are homogenous, i.e., all elements must be of the same type.

Be warned that when it comes to creating arrays, integers and floating-point numbers
are treated as discrete types.

tuple - A tuple consists of zero or more elements. They are denoted with parenthesis, for
example ("noteon", 60, 10). Unlike arrays, they elements need not be of the same type, but the
tuple must be of a fixed length. In tuples, each element position represents something
specific, so reordering a tuple's elements makes no sense.

map - A map consists of a number of key and value pairs, They are denoted with curly braces,
for example {"noteons": [60, 62, 64], "noteoffs": [60]}.

There are also types for each MIDI message. We'll deal with them later.

Back to "hello, world". With your 	data	 module selected, enter the phrase "hello, world"
(including quotes) in the parameters > value field in the data properties window.

Now we need to route the data from the 	data	 object to the 	print	 object. Click on either
the 	data	 outlet or 	print	 inlet and drag to the other corresponding pin. A connection will
appear between the two objects.

If you find it difficult to make these fine-tuned connections, you can zoom in the graph
with the percentage slider in the graph toolbar.

Connections can be removed by right-clicking on them.

If everything has went according to plan, the words "hello, world" should appear in your
console window.



Double-clicking on a 	data	 module will send the string again. Try it! Notice that Architect
will collect together consecutive identical console entries with a (x2) icon, rather than
flooding the console.

Try changing the value of the string in the 	data	 module. Try sending some of the other
simple types. Try sending some composite types.

Module
order

Everything in Architect happens in a well-defined and predictable order. Architect's engine
runs at 960 PPQ, and every tick the following two things occur:

setup
events - Any modules that have pending setup events will have an opportunity to
process. You can check which modules do have setup events in the properties window,
under Events. Some modules, such as 	data	 can have their setup events disabled if you'd
prefer for them not to output anything at setup time. This is handy is they are controlled
by other modules before them. Setup events for a module occur only if the modules have
not output anything yet, and when they are first connected. If a module causes another
module to process, the second module will not use its setup event.

The reset / panic button on the top of the interface causes setup events to be fired
again. This can be a handy way of testing how well your patch would behave when first
loaded. It can also be handy to get things back to a well-known state.

event
sources - Any modules that are event sources will have an opportunity to process.



Every event in Architect will start from either a setup event or event source.

In general, the order that modules process is decided by their position. A module above
another will process first; for modules on the same vertical position, the left-most module will
process first.

For setup events, modules inside macros will process before modules outside them.

For event sources, modules inside macros will process at a time decided by the macro's
position.

You can view the order of events using the Visual Options (top right of the graph
toolbar) > Show Order.

Event
order

When a module sends an object to more than one other module, the order that the
downstream modules receive the event is decided by the same top-to-bottom, left-to-right
order. If an event goes to multiple inlets on the same module, they will arrive left-to-right.

Sequencers
and
MIDI
types

Start with a new preset, and add a 	mono	note	sequencer	 from Built-ins > MIDI Source.

Double-clicking on the 	mono	note	sequencer	 will open the sequencer's interface in a split
window. Using the mouse, compose a melody on the piano roll display by clicking on a
cell.

There are several more unusual parameters available by selecting a different row from the
dropdown that currently says "Velocity":

multiply multiplies the length of a step by the given integer amount.
divide divide the length of a step by the given integer amount. With these two
parameters, you can have exotic step-lengths such as 13/9ths of a beat.
speed allows a step to be stretched or slowed down by a fractional percentage.
count indicates how many times a step is played. 0 skips the step altogether.

Start the transport by clicking play, either in Architect or in your host. You should see a
position indicator moving, but nothing seems to be playing yet. We need to route the MIDI
output from this module to somewhere else.



If you've got external MIDI devices, you can add a 	MIDI	Output	 module from Built-in >
Output and choose the device destination. Connect the outlet from the sequencer to the
	MIDI	Output	 inlet. Notice that MIDI cables are blue.

If you're running Architect as a plug-in, you can route MIDI to your host by selecting
"host" as the destination in the 	MIDI	Output.	

If you'd prefer to route the MIDI to a hosted plug-in, you'll first need to ensure that
Architect knows about your other plug-ins. Scan your plug-ins from the Preferences >
Plug-Ins window (the cog on the top right of the interface). Now, under the Mixer tab, add
a track with the add button, and drag a synth plug-in to the new track. If you can't see
your plug-ins, ensure that the Plug-in Palette window is visible by clicking the button on
the top left of the mixer. Choose the track as the destination in the 	MIDI	Output.	

Sequencers can be synced in a variety of ways. By default, a sequencer created in the graph
is in auto mode. This can be changed in its properties, under Transport > Conduct.

auto - automatically starts playing a sequencer in time with the Auto/Play Q settings.

play - allows a sequencer to be played live using either the pattern window on its left, or by
adding it to the play window. A sequencer created in the play window will automatically have
its conduct set to play. Other sequencers can be added to the play window by enabling show
under the sequencer's play property group.

timeline - allows a sequencer to be controlled by an arrangement in the timeline. A sequencer
created in the timeline window will automatically have its conduct set to timeline. Other
sequencers can be added to the timeline window by enabling show under the sequencer's
timeline property group.

modulation - allows a sequencer to be controlled by its modulation inlets.

Modulating
sequencers

Many of the sequencer parameters can be modulated by other sources. Enable such a
modulation inlet by clicking the eye icon in the sequencer properties, next to Note >
Transpose. Notice that an inlet has appeared on the graph module.

Hovering the mouse over an inlet or outlet pin or module will show the names of the
pins.

Create a 	data	 module and set it's value to 3. Now, connect this to the sequencer's transpose
inlet. Notice that the output sequence has been transposed.



Transforms

Architect provides a number of transforms for manipulating sequencer rows. They can be
shown by clicking the transform icon on the toolbar to the left of a sequencer.

Select which steps you want to process with the select tool, underneath the transform
button.

Which rows are affected by transforms depends upon which grouping mode is selected.

Choose the grouping mode from the sequencer toolbar. Select either "selected only",
"selected plus dependencies", or "all".

Step sequencers consist of a number of discrete rows, such as pitch, velocity, and count.
Sometimes, you wish to manipulate these rows together, and sometimes individually.

"Selected only" mode will only apply a transform to selected rows.

"Selected plus dependencies" will apply a transform to the selected rows and other
closely dependent rows (generally, ones in the same colour.)

"All" will process all rows.

Choose "Shuffle" from the transform functions, and ensure "all" rows are to be transformed.
Apply the transform to rearrange your sequence.

"Coherent shuffle" will keep all the data for particular steps together when shuffled.

Data
processing

Start with a new preset, add a 	print	 module, and add two 	data	 modules.

Or create one data module, and duplicate it with ctrl/cmd + D, or by right-clicking the
module and choosing "Duplicate".

Add an 	add	 module from Built-ins > Maths. The 	add	 module sums two other objects
together. Why, then, does it have three inlets?

Green inlets are called "active" inlets. Modules will generate events in response to
events received to these inlets. Dark, inactive inlets simply set a module's properties or
values.



properties - are visible in the properties window and are persisted when the patch is
reloaded.

values - are only temporary, are not visible in the properties window, and are lost when the
preset is reloaded.

The 	add	 module, then, has two values, and an active 	call	 inlet. Sending any object to the
	call	 inlet will cause the module to sum the previously received values. Let's do that now.

Set one of the 	data	 modules values to 2, and the other to 3. Connect the first 	data	 to
the left inlet of 	add	, and the second 	data	 to the middle of 	add	. Connect the 	add	 outlet
to the 	print	 inlet.

Create a 	signal	 module from Built-ins > Constant, and connect this to the right-most
	call	 inlet of 	add.	

A 	signal	 module simply sends a signal object during its setup or when double-
clicked.

If you send an event to the 	call	 inlet before the add arguments have been specified, a
"missing argument" error will occur.

Changing the value of the 	data	 modules connected only to the others inlets will not cause the
	add	 to process; only when it receives the 	call	 (such as by double-clicking the 	signal	) will
it produce an output.

Vector
processing



Single values, such as what we have been using, are called scalar values. Vectors are an
array of such values. Many modules in Architect support vector processing, simplifying the
patch by removing the need for looping structures.

Change one of the 	data	 values to an array of values, such as [0, 2, 3, 5]. Double-click the
	signal	 to run the 	add	 module. Notice in the output how Architect has added the scalar and
vector values to produce a vector value.

Recycling
vectors

If a vector processing module receives arrays of different lengths, it will recycle the array
elements to produce an array the length of the longest input array. With your current preset,
set the 	data	 values to [1, 2, 3, 4, 5] and [-100, 100], respectively. Notice the output: [-99, 102,
-97, 104, -95]. Because the second array is shorter, its elements will be reused, giving an array
of [1 + -100, 2 + 100, 3 + -100, 4 + 100, 5 + -100].

Creating
an
interface

Start with a new preset, and go to the panel view. Right-click and add a Built-in >
Component > Rotary. This will create both the panel component, and a corresponding
graph module.

If you create a component module in the graph it will not appear in the panel unless you
tick Show from its Panel properties.

Notice how the rotary can be moved on the panel, resized, or styled with the Style
properties.

In order to actually manipulate the rotary component, you will need to leave edit mode by
either pressing ctrl/cmd + E, or clicking on the padlock on the toolbar.

When locked, items can't be moved, added, or removed from the view.

In the graph, create a 	print	 and connect the 	rotary	 to the 	print	 module.

Notice how when the rotary is moved, the value is printed in the console.

Mappings

Many components within Architect can be mapped to internal or external controllers, such as



MIDI keyboards or even your computer keyboard.

Enter mapping mode by pressing ctrl/cmd + M, or click the mappings button at the top
right of the interface.

Anything that can be mapped is now highlighted in purple. You can either manually map
to a device by right-clicking and choosing "Add Mapping", or by using auto-mapping.

Enable auto-mapping by clicking on the button on the bottom right of the Remote
Mappings window. Now, when a mapping target is selected, any events received will be
automatically mapped to this target.

Click on the rotary component and either press a key on your computer keyboard, or play
an attached MIDI keyboard or controller.

Ensure your MIDI devices are selected as input sources in the Preferences > Devices
window.

If you are using the computer keyboard as a mapping source and the graph is focused,
be sure that the graph is locked otherwise key presses will just open the quick dialog.

Remember to turn off auto-mapping after you're done!

Mappings sources can be:

boolean
sources that generate on and off states, such as a MIDI keyboard or
computer keyboard.

numeric
sources that generate a range of values, such as a MIDI CC rotary
controller.

trigger
sources that generate a single event.

Mappings can be routed into and out of the graph using the modules in the Built-in >
Mapping category.

Building
macros

Macros are reusable groups of modules that can be treated as a single module. Here, we will
build a transpose macro for transposing MIDI pitches.

This macro is already available in Built-in > MIDI process.



On the graph, create a 	MIDI	input	 module (from Built-ins > Input), and a 	MIDI	output	.
Choose appropriate source and destination devices for each.

Create a new 	macro	 from Built-in > Macro.

Rename the 	macro	 to transpose in the properties.

Double-click the macro to view its (currently empty) contents.

When inside macros, you can see where you are in the graph using the breadcrumb
trail at the top of the graph.

Macros need inlets and outlets to communicate with the outside world, so add 	MIDI
inlet	 and 	MIDI	outlet	 modules. For now, let's simply connect them together.

Return to the graph root by either clicking on root in the breadcrumb trail, or by double-
clicking an empty spot in the macro. Connect your 	MIDI	input	 to the 	transpose	 macro,
and then the 	transpose	 macro to the 	MIDI	output	.

Confirm that MIDI messages are routed from input to output via the macro.

We need to specify an amount by which to transpose the MIDI notes. Inside the macro,
add a 	data	inlet	, and call it 	amount	. Notice that the name of the inlet module is used to
name the inlet in the macro.



Transposing means adding something to the MIDI note key, so create an 	add	 module,
and connect its left-hand inlet to the 	amount	 inlet.

Setting the key of a MIDI note is done with a 	set	key	 module (from Built-ins > MIDI
process). Connect the 	add	 outlet to the left inlet of 	set	key	. Remove the cable between
the MIDI inlet and outlet, and go from inlet to 	set	key	 to outlet. (See screenshot below.)
Now, how do we know to what key we are adding the transpose amount? We need some
way of extracting this from MIDI notes.

	set	key	 will pass through unaltered any MIDI messages that don't have keys.

Add an 	unpack	noteon	 module from Built-ins > Data Source. This module, on receiving a
noteon MIDI message, will send values containing the note's key, velocity, and channel
(and uncoupled status: more of that later.) Any other type of MIDI message will be passed
to the surplus outlet.



Connect the macro MIDI inlet to the 	unpack	noteon	 inlet. Connect the 	unpack	noteon	
key outlet to both the middle and right inlet's of 	add	. This will both set the second
argument, and call the 	add	 module.

Now, if you play a MIDI note, you will get… a "missing argument" error.

Right-click on an error in the console and choose "Find Source" to locate an erroring
module.

We've not yet specified the amount to transpose by. Let's give it a default value so it still
works even if no amount is specified. Add a 	0	 from Built-in > Constant. This module
simply sends a constant 0 value. You can do the same with a 	data	 module, but these
constants are a little more efficient. Connect the 	0	 to the left-hand inlet.

This inlet should now be connected to two things, the 	0	 module and 	amount	 inlet.

Because the 	0	 module has a setup event, when you first instantiate a transpose macro, it will



set the first argument of 	add	 to 0.

Now, in the root of the graph, create a 	data	 and set its value to 12. Connect this to the
	transpose	 amount. MIDI notes should now be transposed by an octave. Result!

You may be wondering, what happens if the transpose amount changes between a
noteon and noteoff. Won't we get a hanging note? The answer is no, and that is because
	set	key	 has note
matching.

Note
matching

Note matching means that some modules (such as 	set	key	) will remember their state when
they receive a noteon, and then apply the same state to a noteoff, even if things have changed
in the meantime. Try it: play a note, change the transpose amount, and then release the note.
Notice that the noteoff ignored the current transpose amount and instead used the one its
coupled note had.

Note matching can be disabled, per module, in the properties.

Note
coupling

This is an advanced topic, and one you don't need to worry about if you're just starting
with Architect. Be aware of it, but don't panic if you don't fully understand it.

A closely related concept to note matching is note
coupling. A coupled noteon is matched
with a coupled noteoff. By default, notes are coupled, which means that a noteon message
will eventually be followed by a noteoff message. Architect uses this fact to try to avoid
hanging notes by automatically inserting noteoffs if the source of the noteon is disconnected.
In the vast majority of cases, you needn't worry about this concept and can feel secure that
Architect won't leave notes hanging.

But sometimes, you want uncoupled notes, such as passing a noteon to a drone that you
don't ever want to stop. Or maybe you're routing noteon and noteoffs to different places. In
these cases (and to be honest, probably in only these two cases) you will want to uncouple
your notes to stop Architect automatically generating noteoffs for you. You can convert notes
with 	uncouple	note	 and 	couple	note	 modules from Built-in > MIDI process.

Finishing
the
transpose
macros

So what happens if someone sends something odd to the 	transpose	 amount inlet, like a



string. Wouldn't it be good if Architect can specify that only a subset of types are accepted?
Well it can, with type
matching.

Type
matching

Data inlets (and the standalone 	type	check	 module) can raise an error if the type passed to
them don't match the expected types. This can be set in the Type Check property.

You can specify the following simple types: 	any,	boolean,	string,	integer,	float,	signal,
undefined	.

The 	number	 matcher will accept both integers and floats.

All numeric types can be prefixed with 	positive	, 	nonpositive	, 	negative	, or 	nonnegative	,
for example, 	nonnegative	integer	.

You can also specify 	map	, 	array	, or 	tuple	. Arrays can prefixed with 	nonempty	, and for
arrays and tuples the type of expected elements can be specified with 	array[integer]	 or
	tuple(string,	integer)	.

Finally, these can be combined with 	or	 to build complex matches, such as 	integer	or
array[integer]	or	tuple(integer,integer)	or	tuple(integer,array[integer])	or

array[tuple(integer,integer)]	

This last example is what a mono sequencer pitch row inlet accepts.

So what type should we have for the amount inlet? 	integer	 would fit the bill, but why limit
ourselves: the vector processing modules can also work on arrays, so maybe 	integer	or
array[integer]	 is a better fit. By specifying an array for the transpose amount, say [-12, 12],
each note will produce two harmonies.

Memory

Memory modules allow a group of modules to all share access to the same variable. Memory
cables are thick and red, and rather than representing data flow they simply show that all
connected modules are accessing the same variable.

To show memory in action, lets build a counter macro.

From a new preset, add a 	macro	, rename it 	counter	 and give it a data inlet called
	reset	, an active data inlet called 	read	, and a data outlet.



Inside the macro, add a 	memory	 module from Built-in > Memory, and 	store	 from the
same location.

Connect the 	memory	 outlet to the 	store	 inlet, remembering that this doesn't specify data
flow, but simply says that the 	store	 uses the connected 	memory	 variable.

Add a 	0	 module and connect its inlet to 	reset	, and outlet to 	store	.

When a constant module such as 	0	 receives an event, it will send its value.

When we receive an event to the 	read	 inlet, we want to (a) read the current value from
the 	memory	, (b) increment it, (c) write the value back to the 	memory	 and (d) output the
original value. Easy!

Creates another 	store	, a 	load	 (from Built-ins > Memory), a 	data	order	 from Built-ins >
Data Process, and an 	increment	 from Built-ins > Maths. Wire them up as follows, and
we'll discuss each in turn:



The 	load	 module, when it receives an event, outputs the current value from the
downstream 	memory	 module.

	order	 sends this value to its outlets in left-to-right order. You can rely on module
positioning to dictate the order events are received, but often the 	order	 module makes
this clearer.

	increment	 accepts a numeric value (or array) and returns the value + 1.

Try the macro. Connect the 	reset	 and 	read	 inlets to 	signal	s and the outlet to 	print	
and see how the output value is increased each time 	read	 gets an event.

Transactions

Often you make wish to make multiple changes to the graph, but without committing these
changes until all are finished. The transaction button on the graph toolbar enables you add,
delete, connect and disconnect modules without these changes being applied until the button
is pressed again.

Only graph-level changes are transacted. Changes to specific modules, such as a
sequencer row, are not transacted.

The
debugger

Debugging can be enabled with the button the graph toolbar. Any macros beginning with



	debug	 or 	assert	 will only process when the debugger is on. These means that you can leave
debug checks in your patch during development, and easily enable or disable them.

Building
your
own
sequencer

Rather than relying on the built-in sequencers, Architect comes with all the components
needed to built custom sequencers of your own designs. In this tutorial, we'll build a simple
step sequencer.

Create a 	numeric	table	 and 	boolean	table	 on the panel. Arrange them as you see fit.

Any tables with the same parent module and who have the same View Group
parameter will zoom and scroll together. If you lock the panel and scroll either table by
dragging the ruler, you will see this in action.

For the 	numeric	table	, set the type to Cell, the range minimum to 48, maximum to 70,
and leave the interval as 1.

For both tables, turn off the Setup Event property. We only want these tables to output
data when they are read from, not at setup time.

Next we need to build a clocking source. Add a 	metronome	 from Built-in > Data Source,
and set the interval to 	1/16	. When the transport is playing, the metronome will output a
signal object on every 1/16th of a bar.

Now we work out what step should be played. A 	get	clock	 (from Built-in > Arrangement)
returns the current clock tick as an integer value.

Unless we want a note to be playing every 960 PPQ, this raw clock must be divided down
to a step value. Add a 	1/16	ticks	 module from Built-in > Constant. This module outputs
the number of ticks in a 16th note. Connect up, as illustrated below, a 	floor	divide	
(Built-in > Maths) module. A 	floor	divide	 divides two numbers, but ignores any
fractional remainder. If you wire this into a 	print	 module, you should see the count of
16th notes being played.



Our table only has 16 steps though, so (removing the 	print	 module first) wire up a
	modulo	 (Built-in > Maths) and a 	data	 with a value of 16. 	modulo	 returns the remainder
when the first argument is divided by the second. In this case, it will always returns a
value in the range of 0 to 15, which perfectly matches our table indices.



Connect the 	modulo	 output to both table's highlighted step inlets. This will enable us to
visually see the steps advancing. Start your transport and see for yourself.

We need to generate some MIDI notes, so create a 	pack	note	 (Built-in > MIDI Source.),
and connect this to a 	MIDI	output.	

Each note will be 1/16th of a bar long, so create another 	1/16	ticks	 module and
connect to the 	pack	note	 duration inlet.

The 	numeric	table	 will provide the note keys. The 	boolean	table	 will decide if a note
plays or not, using a 	data	branch	 module (Built-in > Data Process). 	branch	 modules
have two inlets. If the control inlet receives a true value, all succeeding events will be
routed to the left outlet. If the control inlet receives a false value, all succeeding events will
be routed to the right outlet. In the finished sequencer below, this means that each false



cell in the 	boolean	table	 is routed to nowhere, whilst true cells call the 	pack	note.	

Lua
scripting

The 	Lua	script	 module (Built-in > Script) allows you to run a Lua script within Architect. For
a complete guide to programming in Lua, I recommend the book "Programming in Lua".
Architect currently uses Lua 5.3.

Lua
API

	print(x)	 Writes x to the Lua output window or console.

	arc.VERSION	 returns the version of the Architect application.

	arc.transport	

This contains methods for interacting with the main transport.

	arc.transport.TICKS	&	arc.transport.BARS	 are constants for the 	transport.isAtSync	
function.

	arc.transport.isPlaying()	 returns true if the transport is currently playing.

	arc.transport.isAtSync(type,	nth)	 returns true if we are currently exactly on a nth division
of the given type.



--	returns	true	on	every	third	bar.
arc.transport.isAtSync(lua.arc.transport.BARS,	3)

	arc.transport.getBeatTicks(numerator,	denominator)	 returns the number of ticks in the
given number of beats.

--	returns	the	number	of	beats	in	7	quarter	notes
arc.transport.getBeatTicks(7,	4)

	arc.transport.getClock()	 returns the current clock position in ticks.

	arc.transport.getTempo()	 returns the current temporary

	arc.transport.getTimeSignature()	 returns two integers containing the current time
signature.

	arc.transport.getMetreChangeClock()	 returns the historic clock tick of the most recent time-
signature or tempo change.

	arc.module	

This contains methods for interacting with the script's housing module.

	arc.module.getName()	 returns the name of the Modules

	arc.module.inlets	 is a 1-based collections of inlet objects

	arc.module.outlets	 is a 1-based collections of inlet objects

	arc.module.load()	 is called after the script is first compiled, but before it is handy to the
graph. This is the place to do CPU intensive activites such as generating look-up tables. You
may implement this function in your script body.

	arc.module.reset()	 is called when the graph is reset. You may implement this function in
your script body.

	arc.module.setup()	 is called when the module is first setup on the graph. You may
implement this function in your script body.

	arc.module.tick()	 is called one per tick during the event source phase. You may implement



this function in your script body.

	arc.module.receive(inlet,	object)	 is called when the script receives an event. 	inlet	 is a
integer representing the inlet number, and 	object	 a Lua object representing the event data.
You may implement this function in your script body.

	arc.inlet	

	arc.inlet:getType()	 return "inlet"

	arc.inlet:getName()	 return the name of the inlet.

	arc.inlet:getInletType()	 returns the type of the inlet, either "data" or "MIDI".

	arc.outlet	

	arc.outlet:getType()	 return "outlet"

	arc.outlet:getName()	 return the name of the inlet.

	arc.outlet:getOutletType()	 returns the type of the inlet, either "data" or "MIDI".

	arc.outlet:isConnected()	 return true if the outlet has anything connected to it.

	arc.outlet:send(object)	 sends 	object	 to all modules connect to this inlet.

	arc.array	

	arc.array.isTypeOf(x)	 returns true if x is an arc.array.

	arc.array.new(values)	 creates a new array object populated with values.

	arc.array:getType()	 returns "array".

	arc.array:clone()	 returns a new copy of this array.

	arc.array:length()	 returns the number of elements in this array.

	arc.array:pack()	 returns a lua table containing this array's elements.

	arc.array:get(nth)	 returns the nth element. Arrays indices are 0-based. Braces notation, eg
	arr[3]	, is also supported.



	arc.array:set(nth,	val)	 set the nth element to val. Array indices are 0-based. Braces
notation, eg 	arr[3]	=	23	, is also supported.

	arc.array:insert(val)	 inserts an new element on the end of the array.

	arc.array:insert(position,	val)	 inserts an new element at position.

	arc.array:remove(nth)	 removes the nth element.

	arc.array:clear()	 removes all elements.

Arrays can also be iterated using 	pairs	

local	arr	=	arc.array.new(2,	3,	5)
for	k,	v	in	pairs(arr)	do	print(k,	v)	end

	arc.tuple	

	arc.tuple.isTypeOf(x)	 returns true if x is an arc.tuple.

	arc.tuple.new(values)	 creates a new tuple object populated with values.

	arc.tuple:getType()	 returns "tuple".

	arc.tuple:clone()	 returns a new copy of this tuple.

	arc.tuple:length()	 returns the number of elements in this tuple.

	arc.tuple:pack()	 returns a lua table containing this tuple's elements.

	arc.tuple:get(nth)	 returns the nth element. Tuple indices are 0-based. Braces notation, eg
	tuple[3]	, is also supported.

	arc.tuple:set(nth,	val)	 set the nth element to val. Tuple indices are 0-based. Braces
notation, eg 	arr[3]	=	23	, is also supported.

Tuples can also be iterated using 	pairs	

local	t	=	arc.tuple.new("noteon",	60,	5,	10)
for	k,	v	in	pairs(t)	do	print(k,	v)	end



	arc.map	

	arc.map.isTypeOf(x)	 returns true if x is an arc.map.

	arc.map.new()	 creates a new empty map object.

	arc.map:getType()	 returns "map".

	arc.map:clone()	 returns a new copy of this map.

	arc.map:length()	 returns the number of elements in this tuple.

	arc.map:pack()	 returns a lua table containing this map's elements.

	arc.map:get(key)	 returns the element with this key.Braces notation, eg 	map[3]	, is also
supported.

	arc.map:set(key,	val)	 set the key element to val. Braces notation, eg 	map[3]	=	23	, is also
supported.

	arc.map:member(key)	 returns true if the map has a value with the given key.

	arc.map:delete(key)	 removes the element with the given key.

	arc.map:clear()	 removes all elements.

Maps can also be iterated using 	pairs	

local	m	=	arc.map.new()
m:set(2,	"alfa")
m:set(3,	"bravo")
m:set(5,	"charlie")
for	k,	v	in	pairs(m)	do	print(k,	v)	end

	arc.signal	

	arc.signal.isTypeOf(x)	 returns true if x is an arc.signal.

	arc.signal.new()	 creates a new signal object

	arc.signal:getType()	 returns "signal".



	arc.signal:clone()	 returns a new copy of this object.

	arc.undefined	

	arc.undefined.isTypeOf(x)	 returns true if x is an arc.undefined.

	arc.undefined.new()	 creates a new undefined object

	arc.undefined:getType()	 returns "undefined".

	arc.undefined:clone()	 returns a new copy of this object.

	arc.noteon	

	arc.noteon.isTypeOf(x)	 returns true if x is an arc.noteon.

	arc.noteon.new(key	=	60,	velocity	=	64,	channel	=	1,	isUncoupled	=	false)	 creates a
new noteon object

	arc.noteon:getType()	 returns "noteon".

	arc.noteon:clone()	 returns a new copy of this object.

	arc.noteon:getKey()	 returns the key

	arc.noteon:setKey(val)	 sets the key

	arc.noteon:getVelocity()	 returns the velocity

	arc.noteon:setVelocity(val)	 sets the velocity

	arc.noteon:getChannel()	 returns the channel

	arc.noteon:setChannel(val)	 sets the channel

	arc.noteon:isUncoupled()	 returns true if the note is uncoupled

	arc.noteon:setUncoupled(val)	 sets the uncoupled status

	arc.noteoff	

	arc.noteoff.isTypeOf(x)	 returns true if x is an arc.noteff.



	arc.noteff.new(key	=	60,	velocity	=	64,	channel	=	1,	isUncoupled	=	false)	 creates a
new noteoff object

	arc.noteoff:getType()	 returns "noteoff".

	arc.noteoff:clone()	 returns a new copy of this object.

	arc.noteoff:getKey()	 returns the key

	arc.noteoff:setKey(val)	 sets the key

	arc.noteoff:getVelocity()	 returns the velocity

	arc.noteoff:setVelocity(val)	 sets the velocity

	arc.noteoff:getChannel()	 returns the channel

	arc.noteoff:setChannel(val)	 sets the channel

	arc.noteoff:isUncoupled()	 returns true if the note is uncoupled

	arc.noteoff:setUncoupled(val)	 sets the uncoupled status

	arc.program	

	arc.program.isTypeOf(x)	 returns true if x is an arc.program.

	arc.program.new(program	=	0,	channel	=	1)	 creates a new program object

	arc.program:getType()	 returns "program".

	arc.program:clone()	 returns a new copy of this object.

	arc.program:getProgram()	 returns the program

	arc.program:setProgram(val)	 sets the program

	arc.program:getChannel()	 returns the channel

	arc.program:setChannel(val)	 sets the channel

	arc.channelpressure	



	arc.channelpressure.isTypeOf(x)	 returns true if x is an arc.channelpressure.

	arc.channelpressure.new(value	=	64,	channel	=	1)	 creates a new channelpressure object

	arc.channelpressure:getType()	 returns "channelpressure".

	arc.channelpressure:clone()	 returns a new copy of this object.

	arc.channelpressure:getValue()	 returns the value

	arc.channelpressure:setValue(val)	 sets the value

	arc.channelpressure:getChannel()	 returns the channel

	arc.channelpressure:setChannel(val)	 sets the channel

	arc.pitchbend	

	arc.pitchbend.isTypeOf(x)	 returns true if x is an arc.pitchbend.

	arc.pitchbend.new(value	=	8192,	channel	=	1)	 creates a new pitchbend object

	arc.pitchbend:getType()	 returns "pitchbend".

	arc.pitchbend:clone()	 returns a new copy of this object.

	arc.pitchbend:getValue()	 returns the value

	arc.pitchbend:setValue(val)	 sets the value

	arc.pitchbend:getChannel()	 returns the channel

	arc.pitchbend:setChannel(val)	 sets the channel

	arc.controller	

	arc.controller.isTypeOf(x)	 returns true if x is an arc.controller.

	arc.controller.new(controller	=	0,	value	=	64,	channel	=	1)	 creates a new controller
object

	arc.controller:getType()	 returns "controller".



	arc.controller:clone()	 returns a new copy of this object.

	arc.controller:getController()	 returns the controller

	arc.controller:setController(val)	 gets the controller

	arc.controller:getValue()	 returns the value

	arc.controller:setValue(val)	 sets the value

	arc.controller:getChannel()	 returns the channel

	arc.controller:setChannel(val)	 sets the channel

	arc.polypressure	

	arc.polypressure.isTypeOf(x)	 returns true if x is an arc.polypressure.

	arc.polypressure.new(key	=	60,	value	=	64,	channel	=	1)	 creates a new polypressure
object

	arc.polypressure:getType()	 returns "polypressure".

	arc.polypressure:clone()	 returns a new copy of this object.

	arc.polypressure:getKey()	 returns the key

	arc.polypressure:setKey(val)	 sets the key

	arc.polypressure:getValue()	 returns the value

	arc.polypressure:setValue(val)	 sets the value

	arc.polypressure:getChannel()	 returns the channel

	arc.polypressure:setChannel(val)	 sets the channel

	arc.start	

	arc.start.isTypeOf(x)	 returns true if x is an arc.start.

	arc.start.new()	 creates a new start object



	arc.start:getType()	 returns "start".

	arc.start:clone()	 returns a new copy of this object.

	arc.stop	

	arc.stop.isTypeOf(x)	 returns true if x is an arc.stop.

	arc.stop.new()	 creates a new stop object

	arc.stop:getType()	 returns "stop".

	arc.stop:clone()	 returns a new copy of this object.

	arc.continue	

	arc.continue.isTypeOf(x)	 returns true if x is an arc.continue.

	arc.continue.new()	 creates a new continue object

	arc.continue:getType()	 returns "continue".

	arc.continue:clone()	 returns a new copy of this object.

	arc.clock	

	arc.clock.isTypeOf(x)	 returns true if x is an arc.clock.

	arc.clock.new(position	=	0)	 creates a new continue object

	arc.clock:getType()	 returns "clock".

	arc.clock:clone()	 returns a new copy of this object.

	arc.songposition	

	arc.songposition.isTypeOf(x)	 returns true if x is an arc.songposition.

	arc.songposition.new()	 creates a new songposition object

	arc.songposition:getType()	 returns "songposition".



	arc.songposition:clone()	 returns a new copy of this object.

	arc.songposition:getPosition()	 returns the position

	arc.songposition:setPosition(val)	 sets the position

	arc.sysex	

	arc.sysex.isTypeOf(x)	 returns true if x is an arc.sysex.

	arc.sysex.new(values)	 creates a new sysex object

	arc.sysex:getType()	 returns "sysex".

	arc.sysex:clone()	 returns a new copy of this object.

	arc.sysex:length()	 returns length of this object.

	arc.sysex:get(nth)	 returns the nth element. Arrays indices are 0-based. Braces notation, eg
	sy[3]	, is also supported.

	arc.sysex:set(nth,	val)	 set the nth element to val. Array indices are 0-based. Braces
notation, eg 	sy[3]	=	23	, is also supported.

	arc.sysex:resize(length)	 resizes the sysex array to the given length.

Sysex objects can also be iterated using 	pairs	

local	sy	=	arc.sysex.new(0x20,	0x32,	0x11,	0x44)
for	k,	v	in	pairs(sy)	do	print(k,	v)	end

A
Lua
example

Create a 	Lua	script	 module and add 1 MIDI inlet and 1 MIDI outlet.

This script passes through MIDI objects, but noteon and noteoffs have an additional harmony
added.

function	arc.module.receive(inlet,	object)
		--	pass	the	original	object	through



		arc.module.outlets[1]:send(object)

		--	if	it	is	a	noteon	or	noteoff,	send	a	perfect-5th	harmony
		if	(arc.noteon.isTypeOf(object)	or	arc.noteoff.isTypeOf(object))	then
				object:setKey(object:getKey()	+	7)
				arc.module.outlets[1]:send(object)
		end
end

Writing
to
Step
Sequencer
Patterns

Step sequencer patterns consist of a number of individual rows, such as pitch, velocity, or
speed. To write to a row programatically using graph modules, the inlet for that row must first
be made visible by toggling the "show" icon in the Rows property list of the current sequencer.
Data can then be sent to the inlet in one of the following formats:

	number:	value	 will write the given number to the first step of that row.
	[number:	value]	 will write the array of numbers to each step in turn. For example, 	[2,
3,	5]	 will write 2 to the first step, 3 to the second step, and 5 to the third step.
	(number:	step,	number:	value)	 will write the given value to the specified step. For
example 	(12,	60)	 will write value 60 to step 12.
	(number:	step,	[number:	value])	 will write the array of values to the steps, starting
from the given step. For example, 	(10,	[60,	64,	68])	 will write the value 60 to step 10,
64 to step 11, and 68 to step 12.
	[tuple(number:	step,	number:	value)]	 will write the array of tuples, using the same
	(number:	step,	number:	value)	 format as above. For example, 	[(12,	60),	(13,	72),
(20,	58)]	 will write value 60 to step 12, value 72 to step 13, and value 58 to step 20.

These same data formats are used when writing to table modules.

Where
now?

Thank you for taking the time to read this quick-start guide. As I'm sure you'll now appreciate,
Architect is a large software application capable of many wonderful things. But having so
many options can be overwhelming, so here are a few pointers:

A 	MIDI	to	tuple	 (Built-in > MIDI Process) module connected to a 	print	 is very handing
for debugging which MIDI messages are being transmitted.

Most things in the sequencer modules can be modulated, either by the inlets or by remote
mappings. Try combining two sequencers, one altering the other, to turn two simple
patterns into an ever changing one. The aux outputs from the sequencers are ideal for



this.

There are lots of random sources in Built-in > Data Source, ideal for generative pieces.


